Employing a synergistic bioinformatics and machine learning framework to elucidate biomarkers associating asthma with pyrimidine metabolism genes.
Journal:
Respiratory research
PMID:
39217320
Abstract
BACKGROUND: Asthma, a prevalent chronic inflammatory disorder, is shaped by a multifaceted interplay between genetic susceptibilities and environmental exposures. Despite strides in deciphering its pathophysiological landscape, the intricate molecular underpinnings of asthma remain elusive. The focus has increasingly shifted toward the metabolic aberrations accompanying asthma, particularly within the domain of pyrimidine metabolism (PyM)-a critical pathway in nucleotide synthesis and degradation. While the therapeutic relevance of PyM has been recognized across various diseases, its specific contributions to asthma pathology are yet underexplored. This study employs sophisticated bioinformatics approaches to delineate and confirm the involvement of PyM genes (PyMGs) in asthma, aiming to bridge this significant gap in knowledge.