An Unsupervised Learning Tool for Plaque Tissue Characterization in Histopathological Images.

Journal: Sensors (Basel, Switzerland)
PMID:

Abstract

Stroke is the second leading cause of death and a major cause of disability around the world, and the development of atherosclerotic plaques in the carotid arteries is generally considered the leading cause of severe cerebrovascular events. In recent years, new reports have reinforced the role of an accurate histopathological analysis of carotid plaques to perform the stratification of affected patients and proceed to the correct prevention of complications. This work proposes applying an unsupervised learning approach to analyze complex whole-slide images (WSIs) of atherosclerotic carotid plaques to allow a simple and fast examination of their most relevant features. All the code developed for the present analysis is freely available. The proposed method offers qualitative and quantitative tools to assist pathologists in examining the complexity of whole-slide images of carotid atherosclerotic plaques more effectively. Nevertheless, future studies using supervised methods should provide evidence of the correspondence between the clusters estimated using the proposed textural-based approach and the regions manually annotated by expert pathologists.

Authors

  • Matteo Fraschini
    Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, 09123 Cagliari, Italy.
  • Massimo Castagnola
    Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.
  • Luigi Barberini
    Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09123 Cagliari, Italy.
  • Roberto Sanfilippo
    Dipartimento di Scienze Chirurgiche, Università degli Studi di Cagliari, 09123 Cagliari, Italy.
  • Ferdinando Coghe
    UOC Laboratorio Analisi, AOU of Cagliari, 09123 Cagliari, Italy.
  • Luca Didaci
    Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, 09123 Cagliari, Italy.
  • Riccardo Cau
    Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Cagliari.
  • Claudio Frongia
    Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, 09123 Cagliari, Italy.
  • Mario Scartozzi
    Department of Radiology, A.O.U, di Cagliari-Polo di Monserrato s.s, 09124, Cagliari, Italy.
  • Luca Saba
    Department of Radiology, A.O.U., Italy.
  • Gavino Faa
    Department of Pathology, 09100, AOU of Cagliari, Italy.