Conformations of KRAS4B Affected by Its Partner Binding and G12C Mutation: Insights from GaMD Trajectory-Image Transformation-Based Deep Learning.

Journal: Journal of chemical information and modeling
PMID:

Abstract

Binding of partners and mutations highly affects the conformational dynamics of KRAS4B, which is of significance for deeply understanding its function. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) and principal component analysis (PCA) were carried out to probe the effect of G12C and binding of three partners NF1, RAF1, and SOS1 on the conformation alterations of KRAS4B. DL reveals that G12C and binding of partners result in alterations in the contacts of key structure domains, such as the switch domains SW1 and SW2 together with the loops L4, L5, and P-loop. Binding of NF1, RAF1, and SOS1 constrains the structural fluctuation of SW1, SW2, L4, and L5; on the contrary, G12C leads to the instability of these four structure domains. The analyses of free energy landscapes (FELs) and PCA also show that binding of partners maintains the stability of the conformational states of KRAS4B while G12C induces greater mobility of the switch domains SW1 and SW2, which produces significant impacts on the interactions of GTP with SW1, L4, and L5. Our findings suggest that partner binding and G12C play important roles in the activity and allosteric regulation of KRAS4B, which may theoretically aid in further understanding the function of KRAS4B.

Authors

  • Jianzhong Chen
  • Jian Wang
    Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China.
  • Wanchun Yang
    School of Science, Shandong Jiaotong University, Jinan 250357, China.
  • Lu Zhao
    Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
  • Guodong Hu
    Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.