Machine Learning with Clinical and Intraoperative Biosignal Data for Predicting Cardiac Surgery-Associated Acute Kidney Injury.
Journal:
Studies in health technology and informatics
PMID:
39176729
Abstract
Early identification of patients at high risk of cardiac surgery-associated acute kidney injury (CSA-AKI) is crucial for its prevention. We aimed to leverage perioperative clinical and intraoperative biosignal data to develop machine learning models that predict CSA-AKI. We introduced a novel approach for extracting relevant features from high-resolution intraoperative biosignals to reflect the patient's baseline status, the extent of unfavorable conditions encountered intraoperatively, and data variability. We developed XGBoost models from 2,003 patients across three consecutive perioperative phases using: 1) only preoperative, 2) pre- and intraoperative, and 3) pre-, intra-, and postoperative variables. The predictive performance progressively improved throughout the three consecutive perioperative phases (e.g., AUROC of 0.767 to 0.797 and 0.840), all surpassing the Thakar Score's performance. According to the SHAP method, intraoperative perfusion pressure was most important in the prediction, highlighting the importance of intraoperative patient management and the use of high-resolution biosignal data in predictive modeling to analyze hemodynamic fluctuations during surgery. Early postoperative biomarkers were also important predictors, highlighting the importance of intensified monitoring early after surgery.