AIMC Topic: Acute Kidney Injury

Clear Filters Showing 1 to 10 of 218 articles

Development and validation of interpretable machine learning models for predicting AKI risk in patients treated with PD-1/PD-L1: a retrospective study.

BMC medical informatics and decision making
BACKGROUND: Anti-programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immunotherapy has revolutionized cancer treatment. However, it can cause immune-related adverse events, including acute kidney injury (AKI). Such adverse e...

Development and validation of risk prediction models for acute kidney disease in gout patients: a retrospective study using machine learning.

European journal of medical research
BACKGROUND: Limited research has been conducted on the prevalence of acute kidney injury (AKI) and acute kidney disease (AKD) in gout patients, as well as the impact of these renal complications on patient outcomes. This study aims to develop machine...

A practical guide for nephrologist peer reviewers: evaluating artificial intelligence and machine learning research in nephrology.

Renal failure
Artificial intelligence (AI) and machine learning (ML) are transforming nephrology by enhancing diagnosis, risk prediction, and treatment optimization for conditions such as acute kidney injury (AKI) and chronic kidney disease (CKD). AI-driven models...

Cellular senescence in renal ischemia-reperfusion injury.

Chinese medical journal
Acute kidney injury (AKI) affects more than 20% of hospitalized patients and is a significant contributor to morbidity and mortality, primarily due to ischemia-reperfusion injury (IRI), which is one of the leading causes of AKI. IRI not only exacerba...

GenAI exceeds clinical experts in predicting acute kidney injury following paediatric cardiopulmonary bypass.

Scientific reports
The emergence of large language models (LLMs) opens new horizons to leverage, often unused, information in clinical text. Our study aims to capitalise on this new potential. Specifically, we examine the utility of text embeddings generated by LLMs in...

Usability of machine learning algorithms based on electronic health records for the prediction of acute kidney injury and transition to acute kidney disease: A proof of concept study.

PloS one
BACKGROUND: Acute kidney injury (AKI) and acute kidney disease (AKD) are frequent complications of hospitalization, resulting in reduced outcomes and increased cost burden. However, these conditions are only sometimes recognized and promptly treated....

Renal Dysfunction Across the Spectrum of Cardiogenic Shock: Mechanisms, Clinical Implications, and Therapeutic Strategies.

Current heart failure reports
PURPOSE OF REVIEW: This review aims to elucidate the complex interplay between cardiogenic shock (CS) and renal function, detailing the mechanisms of kidney injury, identifying risk factors, and providing a framework for the diagnosis and management ...

Exploring the molecular mechanisms of lactylation-related biological functions and immune regulation in sepsis-associated acute kidney injury.

Clinical and experimental medicine
Lactylation, a novel post-translational modification, has been implicated in various pathophysiological processes; however, its role in sepsis-associated acute kidney injury (SA-AKI) remains unclear. This study aimed to investigate the expression pat...

Development and validation of a cardiac surgery-associated acute kidney injury prediction model using the MIMIC-IV database.

PloS one
OBJECTIVE: This study aimed to develop an innovative early prediction model for acute kidney injury (AKI) following cardiac surgery in intensive care unit (ICU) settings, leveraging preoperative and postoperative clinical variables, and to identify k...