Unsupervised Extraction of Body-Text from Clinical PDF Documents.
Journal:
Studies in health technology and informatics
Published Date:
Aug 22, 2024
Abstract
Automatic extraction of body-text within clinical PDF documents is necessary to enhance downstream NLP tasks but remains a challenge. This study presents an unsupervised algorithm designed to extract body-text leveraging large volume of data. Using DBSCAN clustering over aggregate pages, our method extracts and organize text blocks using their content and coordinates. Evaluation results demonstrate precision scores ranging from 0.82 to 0.98, recall scores from 0.62 to 0.94, and F1-scores from 0.71 to 0.96 across various medical specialty sources. Future work includes dynamic parameter adjustments for improved accuracy and using larger datasets.