Enhancing early identification of high-fertile cattle females using infrared blood serum spectra and machine learning.

Journal: Scientific reports
PMID:

Abstract

Artificial insemination (AI) success in bovine reproduction is vital for the cattle industry's economic sustainability and for advancing the understanding of reproductive physiology. Identify high-fertile animals' fertility is a complex task due to multifactorial traits, including hormonal, age-related, and body condition factors. Early high-fertility identification is crucial for timely interventions and enhancing AI success. In this study, we present the potential use of Fourier-transform infrared (FTIR) spectroscopy on blood serum for early identification of high-fertile Nellore female cows for AI protocols. Blood serum FTIR spectra were obtained from Nellore female cows before AI. FTIR spectra underwent data analysis and the results demonstrated successful discrimination between animals that exhibit pregnant and non-pregnant diagnoses 30 days after AI. FTIR spectra revealed consistent vibrational modes, emphasizing Amide I and II bands. Principal Component Analysis (PCA) effectively segregated groups based on molecular information. Linear SVM with C = 10 and 4 PCs achieved 100% accuracy in the group classification. This innovative approach using FTIR spectroscopy and ML algorithms offers a promising means of high-fertile cow identification, potentially improving AI outcomes in Nellore cattle. The study presents valuable insights into advancements in reproductive management practices for this economically significant breed.

Authors

  • Willian Reis
    Veterinary Science Graduate Program, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil.
  • Thiago Franca
    Optics and Photonics Laboratory - SISFOTON/UFMS, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil.
  • Camila Calvani
    Optics and Photonics Laboratory - SISFOTON/UFMS, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil.
  • Bruno Marangoni
    Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil.
  • Eliane Costa E Silva
    Veterinary Science Graduate Program, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil.
  • Alana Nobre
    Animal Science Graduate Program, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil.
  • Gabrielle Netto
    Água Tirada Group, Maracaju, MS, 79159-000, Brazil.
  • Gustavo Macedo
    Veterinary Science Graduate Program, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil. gustavo.macedo@ufms.br.
  • Cícero Cena
    Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil.