Predicting rice phenology across China by integrating crop phenology model and machine learning.

Journal: The Science of the total environment
Published Date:

Abstract

This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.

Authors

  • Jinhan Zhang
    National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
  • Xiaomao Lin
    Department of Agronomy, Kansas State University, 2108 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA.
  • Chongya Jiang
    National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
  • Xuntao Hu
    National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
  • Bing Liu
    Department of Cardiovascular Surgery, the Sixth Medical Centre of Chinese PLA General Hospital, 100048 Beijing, China.
  • Leilei Liu
    National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
  • Liujun Xiao
    National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
  • Yan Zhu
    Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou, 310028, China. Electronic address: zhuyan@zju.edu.cn.
  • Weixing Cao
    National Engineering and Technology Center for Agriculture/Jiangsu Key Laboratory for Information Agriculture/Collaborative Innovation Center for Modern Crop Production, Nanjing Agriculture University, Nanjing 210095, China. caow@njau.edu.cn.
  • Liang Tang
    Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.