Structure and position-aware graph neural network for airway labeling.

Journal: Medical image analysis
Published Date:

Abstract

We present a novel graph-based approach for labeling the anatomical branches of a given airway tree segmentation. The proposed method formulates airway labeling as a branch classification problem in the airway tree graph, where branch features are extracted using convolutional neural networks and enriched using graph neural networks. Our graph neural network is structure-aware by having each node aggregate information from its local neighbors and position-aware by encoding node positions in the graph. We evaluated the proposed method on 220 airway trees from subjects with various severity stages of Chronic Obstructive Pulmonary Disease (COPD). The results demonstrate that our approach is computationally efficient and significantly improves branch classification performance than the baseline method. The overall average accuracy of our method reaches 91.18% for labeling 18 segmental airway branches, compared to 83.83% obtained by the standard CNN method and 87.37% obtained by the existing method. Furthermore, the reader study done on an additional set of 40 subjects shows that our algorithm performs comparably to human experts in labeling segmental-airways. We published our source code at https://github.com/DIAGNijmegen/spgnn. The proposed algorithm is also publicly available at https://grand-challenge.org/algorithms/airway-anatomical-labeling/.

Authors

  • Weiyi Xie
    From the Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands (N.L., C.I.S., L.H.B., M.B., E.C., W.M.v.E., P.K.G., B.G., M.G., N.H., W.H., H.J.H., C.J., R.K., M.K., K.v.L., J.M., M.O., R.S., C. Schaefer-Prokop, S.S., E.T.S., C. Sital, J.T., K.V.V., C.d.V., W.X., B.d.W., M.P., B.v.G.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (L.B.); Thirona, Nijmegen, the Netherlands (J.P.C., E.M.v.R.); Departments of Internal Medicine (T.D.) and Radiology (M.V.), Canisius-Wilhelmina Ziekenhuis, Nijmegen, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands (H.A.G.); GROW School of Oncology and Developmental Biology, Maastricht, the Netherlands (H.A.G.); Departments of Biomedical Physics and Engineering and Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands (L.v.H., I.I.); Department of Radiology, Zuyderland Medical Center, Heerlen, the Netherlands (J.K.); Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany (B.L.); Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, The Hague, the Netherlands (T.v.R.V.); Department of Radiology, Meander Medical Center, Amersfoort, the Netherlands (C. Schaefer-Prokop, S.S.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (J.L.S.).
  • Colin Jacobs
    Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Jean-Paul Charbonnier
    From the Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands (N.L., C.I.S., L.H.B., M.B., E.C., W.M.v.E., P.K.G., B.G., M.G., N.H., W.H., H.J.H., C.J., R.K., M.K., K.v.L., J.M., M.O., R.S., C. Schaefer-Prokop, S.S., E.T.S., C. Sital, J.T., K.V.V., C.d.V., W.X., B.d.W., M.P., B.v.G.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (L.B.); Thirona, Nijmegen, the Netherlands (J.P.C., E.M.v.R.); Departments of Internal Medicine (T.D.) and Radiology (M.V.), Canisius-Wilhelmina Ziekenhuis, Nijmegen, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands (H.A.G.); GROW School of Oncology and Developmental Biology, Maastricht, the Netherlands (H.A.G.); Departments of Biomedical Physics and Engineering and Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands (L.v.H., I.I.); Department of Radiology, Zuyderland Medical Center, Heerlen, the Netherlands (J.K.); Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany (B.L.); Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, The Hague, the Netherlands (T.v.R.V.); Department of Radiology, Meander Medical Center, Amersfoort, the Netherlands (C. Schaefer-Prokop, S.S.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (J.L.S.).
  • Bram van Ginneken
    Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Fraunhofer Mevis, Bremen, Germany.