Advancements in triple-negative breast cancer sub-typing, diagnosis and treatment with assistance of artificial intelligence : a focused review.

Journal: Journal of cancer research and clinical oncology
PMID:

Abstract

Triple negative breast cancer (TNBC) is most aggressive type of breast cancer with multiple invasive sub-types and leading cause of women's death worldwide. Lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) causes it to spread rapidly making its treatment challenging due to unresponsiveness towards anti-HER and endocrine therapy. Hence, needing advanced therapeutic treatments and strategies in order to get better recovery from TNBC. Artificial intelligence (AI) has been emerged by giving its high inputs in the automated diagnosis as well as treatment of several diseases, particularly TNBC. AI based TNBC molecular sub-typing, diagnosis as well as therapeutic treatment has become successful now days. Therefore, present review has reviewed recent advancements in the role and assistance of AI particularly focusing on molecular sub-typing, diagnosis as well as treatment of TNBC. Meanwhile, advantages, certain limitations and future implications of AI assistance in the TNBC diagnosis and treatment are also discussed in order to fully understand readers regarding this issue.

Authors

  • Zahra Batool
    Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Mohammad Amjad Kamal
    West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
  • Bairong Shen
    Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China.