INTRODUCTION: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor...
INTRODUCTION: Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified.
BACKGROUND AND AIMS: Evaluation of the programmed cell death ligand-1 (PD-L1) combined positive score (CPS) is vital to predict the efficacy of the immunotherapy in triple-negative breast cancer (TNBC), but pathologists show substantial variability i...
Journal of the Egyptian National Cancer Institute
38853190
BACKGROUND: The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages.
Journal of cancer research and clinical oncology
39103624
Triple negative breast cancer (TNBC) is most aggressive type of breast cancer with multiple invasive sub-types and leading cause of women's death worldwide. Lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor...
Cancer stem cells (CSCs) have the potential to self-renew and induce cancer, which may contribute to a poor prognosis by enabling metastasis, recurrence, and therapy resistance. Hence, this study was performed to identify the association between CSC-...
Chromosomal Instability (CIN) is a common and evolving feature in breast cancer. Large-scale Transitions (LSTs), defined as chromosomal breakages leading to gains or losses of at least 10 Mb, have recently emerged as a metric of CIN due to their stan...
OBJECTIVE: This study aims to establish a new prognostic index using machine learning models to predict the clinical outcomes of triple-negative breast cancer (TNBC) patients receiving neoadjuvant therapy.
OBJECTIVE: This study aimed to evaluate the predictive value of implementing machine learning models based on ultrasound radiomics and clinicopathological features in the survival analysis of triple-negative breast cancer (TNBC) patients.
Investigating the essential function of CD300LG within the tumor microenvironment in triple-negative breast cancer (TNBC). Transcriptomic and single-cell data from TNBC were systematically collected and integrated. Four machine learning algorithms we...