HELP: A computational framework for labelling and predicting human common and context-specific essential genes.

Journal: PLoS computational biology
PMID:

Abstract

Machine learning-based approaches are particularly suitable for identifying essential genes as they allow the generation of predictive models trained on features from multi-source data. Gene essentiality is neither binary nor static but determined by the context. The databases for essential gene annotation do not permit the personalisation of the context, and their update can be slower than the publication of new experimental data. We propose HELP (Human Gene Essentiality Labelling & Prediction), a computational framework for labelling and predicting essential genes. Its double scope allows for identifying genes based on dependency or not on experimental data. The effectiveness of the labelling method was demonstrated by comparing it with other approaches in overlapping the reference sets of essential gene annotations, where HELP demonstrated the best compromise between false and true positive rates. The gene attributes, including multi-omics and network embedding features, lead to high-performance prediction of essential genes while confirming the existence of essentiality nuances.

Authors

  • Ilaria Granata
    Institute for High-Performance Computing and Networking (ICAR), National Research Council (CNR), V. Pietro Castellino 111, 80131 Naples, Italy.
  • Lucia Maddalena
    Institute for High-Performance Computing and Networking (ICAR), National Research Council (CNR), V. Pietro Castellino 111, 80131 Naples, Italy.
  • Mario Manzo
    Information Technology Services, University of Naples "L'Orientale", Naples, Italy.
  • Mario Rosario Guarracino
    Laboratory of Algorithms and Technologies for Network Analysis, National Research University Higher School of Economics, Nizhny Novgorod, Russia.
  • Maurizio Giordano
    Institute for High-Performance Computing and Networking (ICAR), National Research Council (CNR), V. Pietro Castellino 111, 80131 Naples, Italy.