Analysis of sediment re-formation factors after ginseng beverage clarification based on XGBoost machine learning algorithm.

Journal: Food chemistry
PMID:

Abstract

The aim of this study was to explore the sediment re-formation factors of ginseng beverages subjected to four clarification ways (11 subgroups) including the ethanol precipitation, enzymatic treatment, clarifier clarification, and Hollow Fiber Column (HFC) methods, based on the Extreme Gradient Boosting (XGBoost) model. The results showed that the clarity of the ginseng beverages was significantly improved by all the clarification treatments, but still formed sediment after storage. HFC method exhibited the highest transmittance, the least sediment, and stronger antioxidant activity in the clarification treatment groups. According to the results of chemical composition analyses and partition coefficients, carbohydrates, saponins, proteins and metal elements were involved in varying degrees in the re-formation of the sediments in ginseng beverage after clarification. Based on the above data, the XGBoost model predicted that protein, Rd, Na, K, and total saponins were the five most important chemical components affecting the sediment re-formation in ginseng beverages.

Authors

  • Jiabao Feng
    Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
  • Yuan Cui
    Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
  • Chunyan Jiang
    Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
  • Xueyuan Bai
    Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.
  • Daqing Zhao
    Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China.
  • Meichen Liu
    Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
  • Zhengqi Dong
    State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, PR China.
  • Shiting Yu
    Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China. Electronic address: ysting0331@163.com.
  • Siming Wang
    Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China. Electronic address: lwsm126030@126.com.