Machine learning approaches to evaluate heterogeneous treatment effects in randomized controlled trials: a scoping review.
Journal:
Journal of clinical epidemiology
PMID:
39305940
Abstract
BACKGROUND AND OBJECTIVES: Estimating heterogeneous treatment effects (HTEs) in randomized controlled trials (RCTs) has received substantial attention recently. This has led to the development of several statistical and machine learning (ML) algorithms to assess HTEs through identifying individualized treatment effects. However, a comprehensive review of these algorithms is lacking. We thus aimed to catalog and outline currently available statistical and ML methods for identifying HTEs via effect modeling using clinical RCT data and summarize how they have been applied in practice.