Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media.

Journal: Microbial biotechnology
PMID:

Abstract

Mycobacterium abscessus (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (M. abscessus, M. bolletii and M. massiliense) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished M. massiliense from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.

Authors

  • Alexandre Godmer
    Département de Bactériologie, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
  • Lise Bigey
    U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Sorbonne Université, Paris, France.
  • Quentin Giai-Gianetto
    Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, Paris, France.
  • Gautier Pierrat
    AP-HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Département de Bactériologie, Groupe Hospitalier Universitaire, Sorbonne Université, Hôpital, Paris, France.
  • Noshine Mohammad
    Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France.
  • Faiza Mougari
    Service de Mycobactériologie spécialisée et de référence, Centre National de Référence des Mycobactéries (Laboratoire associé), APHP GHU Nord, Université Paris Cité, INSERM IAME UMR, Paris, France.
  • Renaud Piarroux
    AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France.
  • Nicolas Veziris
    U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Sorbonne Université, Paris, France.
  • Alexandra Aubry
    U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Sorbonne Université, Paris, France.