A review of AutoML optimization techniques for medical image applications.
Journal:
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Published Date:
Oct 16, 2024
Abstract
Automatic analysis of medical images using machine learning techniques has gained significant importance over the years. A large number of approaches have been proposed for solving different medical image analysis tasks using machine learning and deep learning approaches. These approaches are quite effective thanks to their ability to analyze large volume of medical imaging data. Moreover, they can also identify patterns that may be difficult for human experts to detect. Manually designing and tuning the parameters of these algorithms is a challenging and time-consuming task. Furthermore, designing a generalized model that can handle different imaging modalities is difficult, as each modality has specific characteristics. To solve these problems and automate the whole pipeline of different medical image analysis tasks, numerous Automatic Machine Learning (AutoML) techniques have been proposed. These techniques include Hyper-parameter Optimization (HPO), Neural Architecture Search (NAS), and Automatic Data Augmentation (ADA). This study provides an overview of several AutoML-based approaches for different medical imaging tasks in terms of optimization search strategies. The usage of optimization techniques (evolutionary, gradient-based, Bayesian optimization, etc.) is of significant importance for these AutoML approaches. We comprehensively reviewed existing AutoML approaches, categorized them, and performed a detailed analysis of different proposed approaches. Furthermore, current challenges and possible future research directions are also discussed.