Predicting transcriptional changes induced by molecules with MiTCP.

Journal: Briefings in bioinformatics
PMID:

Abstract

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction. After training on the L1000 dataset, MiTCP achieves an average Pearson correlation coefficient (PCC) of 0.482 on the test set and an average PCC of 0.801 for predicting the top 50 differentially expressed genes, which outperforms other existing methods. Furthermore, we used MiTCP to predict CTPs of three cancer drugs, palbociclib, irinotecan and goserelin, and performed gene enrichment analysis on the top differentially expressed genes and found that the enriched pathways and Gene Ontology terms are highly relevant to the corresponding diseases, which reveals the potential of MiTCP in drug development.

Authors

  • Kaiyuan Yang
    From the Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074 (J.T.P.D.H., A.M., Y.L.T., S.L., Y.S.C., S.E.E., S.T.Q.); Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (J.T.P.D.H., A.M., Y.L.T., S.L., Y.S.C., S.E.E., S.T.Q.); NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore (L.Z.); Department of Computer Science, School of Computing, National University of Singapore, Singapore (K.Y., B.C.O.); Department of Radiology, Dammam Medical Complex, Dammam, Saudi Arabia (D.A.R.A.); Biostatistics Unit, Yong Loo Lin School of Medicine, Singapore (Q.V.Y., Y.H.C.); University Spine Centre, Department of Orthopaedic Surgery, National University Health System, Singapore (J.H.T., N.K.); and Department of Radiological Sciences, University of California, Irvine, Orange, Calif (H.Y.).
  • Jiabei Cheng
    Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
  • Shenghao Cao
    Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
  • Xiaoyong Pan
    Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark. xypan172436@gmail.com.
  • Hong-Bin Shen
    Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China. hbshen@sjtu.edu.cn.
  • Ye Yuan
    School of Artificial Intelligence and Automation, MOE Key Lab of Intelligent Control and Image Processing, Huazhong University of Science and Technology, Wuhan 430074, China.