Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review.

Journal: Psychiatry research
PMID:

Abstract

The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13-25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care.

Authors

  • Jamin Patel
    DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 3K7.
  • Caitlin Hung
    DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9.
  • Tarun Reddy Katapally
    DEPtH Lab, Faculty of Health Sciences, Western University, London, Ontario, Canada N6A 5B9; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 3K7; Children's Health Research Institute, Lawson Health Research Institute, 750 Base Line Road East, Suite 300, London, Ontario, Canada N6C 2R5. Electronic address: tarun.katapally@uwo.ca.