SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer.

Journal: Scientific reports
PMID:

Abstract

Fluorouracil-based chemotherapy responses in colorectal cancer (CRC) patients vary widely, highlighting the role of pharmacogenomics in developing better predictive models. We analyzed 379 CRC patients receiving fluorouracil-based chemotherapy, collecting data on fluorouracil metabolism-related SNPs (TYMS, MTHFR, DPYD, RRM1), blood inflammatory markers, and clinical status. Six machine learning models-K-nearest neighbors, support vector machine, gradient boosting decision trees (GBDT), eXtreme Gradient Boosting (XGBoost), LightGBM, and random forest-were compared against multivariate logistic regression and a deep learning model (i.e., multilayer perceptron, MLP). Feature importance analysis highlighted seven predictors: histological grade, N and M staging, monocyte count, platelet-to-lymphocyte ratio, MTHFR rs1801131, and RRM1 rs11030918. In a five-fold cross-validation, XGBoost and GBDT exhibited superior performance, with Area Under Curve (AUC) of 0.88 ± 0.02. XGBoost excelled in identifying favorable prognosis (recall = 0.939). GBDT demonstrated balance in recognizing both categories, with a recall for favorable prognosis of 0.908 and a precision for unfavorable prognosis of 0.863. MLP had a similar AUC (0.87) with high precision for favorable prognosis (recall = 0.946). In external validation, XGBoost model achieved an accuracy of 0.79. An online prognostic tool based on XGBoost was developed, integrating metabolism-related SNPs and inflammatory markers, enhancing CRC treatment precision and supporting tailored chemotherapy.

Authors

  • Jiyifan Li
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
  • Wenxin Zhang
    Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • Lu Chen
    Ultrasonic Department, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China.
  • Xiang Mao
    State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
  • Xinhai Wang
    Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China.
  • Jiafeng Liu
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
  • Yuxin Huang
  • Huijie Qi
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
  • Li Chen
    Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, China.
  • Huanying Shi
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
  • Bicui Chen
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
  • Mingkang Zhong
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
  • Qunyi Li
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
  • Tianxiao Wang
    Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.