Height prediction of individuals with osteogenesis imperfecta by machine learning.
Journal:
Orphanet journal of rare diseases
PMID:
39521996
Abstract
BACKGROUND: Osteogenesis imperfecta (OI) is a genetic disorder characterized by low bone mass, bone fragility and short stature. There is a significant gap in knowledge regarding the growth patterns across different types of OI, and the prediction of height in individuals with OI was not adequately addressed. In this study, we described the growth patterns and predicted the height of individuals with OI employing multiple machine learning (ML) models. Accurate height prediction enables effective monitoring and facilitates the development of personalized intervention plans for managing OI.