AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Infant

Showing 1 to 10 of 876 articles

Clear Filters

Anti-HBs persistence and anamnestic response among medical interns vaccinated in infancy.

Scientific reports
Medical interns are at high risk of acquiring Hepatitis B Virus (HBV) infection during their training. HBV vaccination is the most effective measure to reduce the global incidence of HBV. The duration of protection after HBV vaccination is still cont...

Predicting high-need high-cost pediatric hospitalized patients in China based on machine learning methods.

Scientific reports
Rapidly increasing healthcare spending globally is significantly driven by high-need, high-cost (HNHC) patients, who account for the top 5% of annual healthcare costs but over half of total expenditures. The programs targeting existing HNHC patients ...

Characteristics of lung sounds in early infants using automated analysis.

European journal of pediatrics
UNLABELLED: A new lung sound analysis software program has been developed. It can automatically select a typical lung sound spectrogram and calculate lung sound parameters using machine learning programs. This study aimed to clarify lung sound charac...

Advancing Nutritional Status Classification With Hybrid Artificial Intelligence: A Novel Methodological Approach.

Brain and behavior
PURPOSE: Malnutrition remains a critical public health issue in low-income countries, significantly hindering economic development and contributing to over 50% of infant deaths. Under nutrition weakens immune systems, increasing susceptibility to com...

Machine learning approaches reveal methylation signatures associated with pediatric acute myeloid leukemia recurrence.

Scientific reports
Acute myeloid leukemia (AML) is a severe hematological malignancy characterized by high recurrence rates, especially in pediatric patients, highlighting the need for reliable prognostic markers. This study proposes methylation signatures associated w...

Machine Learning Models for Predicting Pediatric Hospitalizations Due to Air Pollution and Humidity: A Retrospective Study.

Pediatric pulmonology
BACKGROUND: Exposure to air pollution and meteorological conditions, such as humidity, has been linked to adverse respiratory health outcomes in children. This study aims to develop predictive models for pediatric hospitalizations based on both envir...

Data-driven machine learning algorithm model for pneumonia prediction and determinant factor stratification among children aged 6-23 months in Ethiopia.

BMC infectious diseases
INTRODUCTION: Pneumonia is the leading cause of child morbidity and mortality and accounts for 5.6 million under-five child deaths. Pneumonia has a significant impact on the quality of life, the country's economy, and the survival of children. Theref...

Development and validation of an early diagnosis model for severe mycoplasma pneumonia in children based on interpretable machine learning.

Respiratory research
BACKGROUND: Pneumonia is a major threat to the health of children, especially those under the age of five. Mycoplasma  pneumoniae infection is a core cause of pediatric pneumonia, and the incidence of severe mycoplasma pneumoniae pneumonia (SMPP) has...

Forecasting acute childhood malnutrition in Kenya using machine learning and diverse sets of indicators.

PloS one
OBJECTIVES: Malnutrition is a leading cause of morbidity and mortality for children under-5 globally. Low- and middle-income countries, such as Kenya, bear the greatest burden of malnutrition. The Kenyan government has been collecting clinical indica...