A Collaborative Multimodal Learning-Based Framework for COVID-19 Diagnosis.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

The pandemic of coronavirus disease 2019 (COVID-19) has led to a global public health crisis, which caused millions of deaths and billions of infections, greatly increasing the pressure on medical resources. With the continuous emergence of viral mutations, developing automated tools for COVID-19 diagnosis is highly desired to assist the clinical diagnosis and reduce the tedious workload of image interpretation. However, medical images in a single site are usually of a limited amount or weakly labeled, while integrating data scattered around different institutions to build effective models is not allowed due to data policy restrictions. In this article, we propose a novel privacy-preserving cross-site framework for COVID-19 diagnosis with multimodal data, seeking to effectively leverage heterogeneous data from multiple parties while preserving patients' privacy. Specifically, a Siamese branched network is introduced as the backbone to capture inherent relationships across heterogeneous samples. The redesigned network is capable of handling semisupervised inputs in multimodalities and conducting task-specific training, in order to improve the model performance of various scenarios. The framework achieves significant improvement compared with state-of-the-art methods, as we demonstrate through extensive simulations on real-world datasets.

Authors

  • Yuan Gao
    Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou Zhejiang Province, China.
  • Maoguo Gong
  • Yew-Soon Ong
    Rolls-Royce@NTU Corporate Lab c/o, School of Computer Engineering, Nanyang Technological University, Singapore. Electronic address: ASYSOng@ntu.edu.sg.
  • A K Qin
    Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne, Australia.
  • Yue Wu
    Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
  • Fei Xie
    Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China.