Deep learning-driven multi-omics sequential diagnosis with Hybrid-OmniSeq: Unraveling breast cancer complexity.
Journal:
Technology and health care : official journal of the European Society for Engineering and Medicine
PMID:
40105178
Abstract
BackgroundBreast cancer results from an uncontrolled growth of breast tissue. Many methods of diagnosis are using multi-omics data to better understand the complexity of breast cancer.ObjectiveThe new strategy laid out in this work, called "Hybrid-OmniSeq," is a deep learning-based multi-omics data analysis technology that uses molecular subtypes of breast cancer gene to increase the precision and effectiveness of breast cancer diagnosis.MethodFor preprocessing, the BC-VM procedure is utilized, and for molecular subtype analysis, the BC-MSA procedure is utilized. The implementation of Deep Neural Network (DNN) technology in conjunction with Sequential Forward Floating Selection (SFFS) and Truncated Singular Value Decomposition (TSVD) entropy enable adaptive learning from multi-omics gene data. Five machine learning classifiers are used for classification purpose. Hybrid-OmniSeq uses a variety of machine learning classifiers in a thorough analytical process to achieve remarkable diagnostic accuracy. Deep Learning-based multi-omics sequential approach was evaluated using METABRIC RNA-seq data sets of intrinsic subtypes of breast cancer.ResultsAccording to test results, Logistic Regression (LR) had ER (Estrogen Receptor) status values of 94.51%, ER status values of 96.33%, and HER2 (Human Epidermal growth factor Receptor) status values of 92.3%; Random Forest (RF) had ER status values of 93.77%, ER status values of 95.23%, and HER2 status values of 93.4%.ConclusionLR and RF increase the cancer detection accuracy for all subtypes when compared to alternative machine learning classifiers or the majority voting method, providing a comprehensive understanding of the underlying causes of breast cancer.