[Identification of osteoid and chondroid matrix mineralization in primary bone tumors using a deep learning fusion model based on CT and clinical features: a multi-center retrospective study].
Journal:
Nan fang yi ke da xue xue bao = Journal of Southern Medical University
Published Date:
Dec 20, 2024
Abstract
METHODS: We retrospectively collected CT scan data from 276 patients with pathologically confirmed primary bone tumors from 4 medical centers in Guangdong Province between January, 2010 and August, 2021. A convolutional neural network (CNN) was employed as the deep learning architecture. The optimal baseline deep learning model (R-Net) was determined through transfer learning, and an optimized model (S-Net) was obtained through algorithmic improvements. Multivariate logistic regression analysis was used to screen the clinical features such as sex, age, mineralization location, and pathological fractures, which were then connected with the imaging features to construct the deep learning fusion model (SC-Net). The diagnostic performance of the SC-Net model and machine learning models were compared with radiologists' diagnoses, and their classification performance was evaluated using the area under the receiver operating characteristic curve (AUC) and F1 score.