Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain.

Journal: Neural networks : the official journal of the International Neural Network Society
PMID:

Abstract

In practice, collecting auxiliary labeled data with same feature space from multiple domains is difficult. Thus, we focus on the heterogeneous transfer learning to address the problem of insufficient sample sizes in neuroimaging. Viewing subjects, time, and features as dimensions, brain activation and dynamic functional connectivity data can be treated as high-order heterogeneous data with heterogeneity arising from distinct feature space. To use the heterogeneous priori knowledge from the low-dimensional brain activation data to improve the classification performance of high-dimensional dynamic functional connectivity data, we propose a tensor dictionary-based heterogeneous transfer learning framework. It combines supervised tensor dictionary learning with heterogeneous transfer learning for enhance high-order heterogeneous knowledge sharing. The former can encode the underlying discriminative features in high-order data into dictionaries, while the latter can transfer heterogeneous knowledge encoded in dictionaries through feature transformation derived from mathematical relationship between domains. The primary focus of this paper is gender classification using fMRI data to identify emotion-related brain gender differences during adolescence. Additionally, experiments on simulated data and EEG data are included to demonstrate the generalizability of the proposed method. Experimental results indicate that incorporating prior knowledge significantly enhances classification performance. Further analysis of brain gender differences suggests that temporal variability in brain activity explains differences in emotion regulation strategies between genders. By adopting the heterogeneous knowledge sharing strategy, the proposed framework can capture the multifaceted characteristics of the brain, improve the generalization of the model, and reduce training costs. Understanding the gender specific neural mechanisms of emotional cognition helps to develop the gender-specific treatments for neurological diseases.

Authors

  • Lan Yang
    The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.
  • Chen Qiao
    Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China.
  • Takafumi Kanamori
    Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan; RIKEN AIP, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan. Electronic address: kanamori@c.titech.ac.jp.
  • Vince D Calhoun
    Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico; Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico; Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico.
  • Julia M Stephen
  • Tony W Wilson
  • Yu-Ping Wang
    School of Science and Engineering and School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.