Transfer Contrastive Learning for Raman Spectroscopy Skin Cancer Tissue Classification.
Journal:
IEEE journal of biomedical and health informatics
Published Date:
Dec 5, 2024
Abstract
Using Raman spectroscopy (RS) signals for skin cancer tissue classification has recently drawn significant attention, because of its non-invasive optical technique, which uses molecular structures and conformations within biological tissue for diagnosis. In reality, RS signals are noisy and unstable for training machine learning models. The scarcity of tissue samples also makes it challenging to learn reliable deep-learning networks for clinical usages. In this paper, we advocate a Transfer Contrasting Learning Paradigm (TCLP) to address the scarcity and noisy characteristics of the RS for skin cancer tissue classification. To overcome the challenge of limited samples, TCLP leverages transfer learning to pre-train deep learning models using RS data from similar domains (but collected from different RS equipments for other tasks). To tackle the noisy nature of the RS signals, TCLP uses contrastive learning to augment RS signals to learn reliable feature representation to represent RS signals for final classification. Experiments and comparisons, including statistical tests, demonstrate that TCLP outperforms existing deep learning baselines for RS signal-based skin cancer tissue classification.