ACP-DPE: A Dual-Channel Deep Learning Model for Anticancer Peptide Prediction.
Journal:
IET systems biology
PMID:
40119615
Abstract
Cancer is a serious and complex disease caused by uncontrolled cell growth and is becoming one of the leading causes of death worldwide. Anticancer peptides (ACPs), as a bioactive peptide with lower toxicity, emerge as a promising means of effectively treating cancer. Identifying ACPs is challenging due to the limitation of experimental conditions. To address this, we proposed a dual-channel-based deep learning method, termed ACP-DPE, for ACP prediction. The ACP-DPE consisted of two parallel channels: one was an embedding layer followed by the bi-directional gated recurrent unit (Bi-GRU) module, and the other was an adaptive embedding layer followed by the dilated convolution module. The Bi-GRU module captured the peptide sequence dependencies, whereas the dilated convolution module characterised the local relationship of amino acids. Experimental results show that ACP-DPE achieves an accuracy of 82.81% and a sensitivity of 86.63%, surpassing the state-of-the-art method by 3.86% and 5.1%, respectively. These findings demonstrate the effectiveness of ACP-DPE for ACP prediction and highlight its potential as a valuable tool in cancer treatment research.