Deep Learning Superresolution for Simultaneous Multislice Parallel Imaging-Accelerated Knee MRI Using Arthroscopy Validation.

Journal: Radiology
PMID:

Abstract

Background Deep learning (DL) methods can improve accelerated MRI but require validation against an independent reference standard to ensure robustness and accuracy. Purpose To validate the diagnostic performance of twofold-simultaneous-multislice (SMSx2) twofold-parallel-imaging (PIx2)-accelerated DL superresolution MRI in the knee against conventional SMSx2-PIx2-accelerated MRI using arthroscopy as the reference standard. Materials and Methods Adults with painful knee conditions were prospectively enrolled from December 2021 to October 2022. Participants underwent fourfold SMSx2-PIx2-accelerated standard-of-care and investigational DL superresolution MRI at 3 T. Seven radiologists independently evaluated the MRI examinations for overall image quality (using Likert scale scores: 1, very bad, to 5, very good) and the presence or absence of meniscus and ligament tears. Articular cartilage was categorized as intact, or partial or full-thickness defects. Statistical analyses included interreader agreements (Cohen κ and Gwet AC2) and diagnostic performance testing used area under the receiver operating characteristic curve (AUC) values. Results A total of 116 adults (mean age, 45 years ± 15 [SD]; 74 men) who underwent arthroscopic surgery within 38 days ± 22 were evaluated. Overall image quality was better for DL superresolution MRI (median Likert score, 5; range, 3-5) than conventional MRI (median Likert score, 4; range, 3-5) ( < .001). Diagnostic performances of conventional versus DL superresolution MRI were similar for medial meniscus tears (AUC, 0.94 [95% CI: 0.89, 0.97] vs 0.94 [95% CI: 0.90, 0.98], respectively; > .99), lateral meniscus tears (AUC, 0.85 [95% CI: 0.78, 0.91] vs 0.87 [95% CI: 0.81, 0.94], respectively; = .96), and anterior cruciate ligament tears (AUC, 0.98 [95% CI: 0.93, >0.99] vs 0.98 [95% CI: 0.93, >0.99], respectively; > .99). DL superresolution MRI (AUC, 0.78; 95% CI: 0.75, 0.81) had higher diagnostic performance than conventional MRI (AUC, 0.71; 95% CI: 0.67, 0.74; = .002) for articular cartilage lesions. DL superresolution MRI did not introduce hallucinations or erroneously omit abnormalities. Conclusion Compared with conventional SMSx2-PIx2-accelerated MRI, fourfold SMSx2-PIx2-accelerated DL superresolution MRI in the knee provided better image quality, similar performance for detecting meniscus and ligament tears, and improved performance for depicting articular cartilage lesions. © RSNA, 2025 See also the editorial by Nevalainen in this issue.

Authors

  • Sven S Walter
  • Jan Vosshenrich
    Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland.
  • Tatiane Cantarelli Rodrigues
    From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
  • Danoob Dalili
    From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
  • Benjamin Fritz
    Department of Radiology, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zurich, Switzerland. benjamin.fritz@balgrist.ch.
  • Richard Kijowski
    Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
  • Eun Hae Park
    Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Medical Convergence Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
  • Aline Serfaty
    From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
  • Steven E Stern
    From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
  • Inge Brinkmann
    From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
  • Gregor Koerzdoerfer
    MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany.
  • Jan Fritz
    The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., Room 4223, Baltimore, MD, 21287, USA. jfritz9@jhmi.edu.