Radiogenomics and machine learning predict oncogenic signaling pathways in glioblastoma.
Journal:
Journal of translational medicine
PMID:
39871351
Abstract
BACKGROUND: Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. The survival rate remains low despite standard therapies, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), are crucial in assessing GBM. Disruptions in various oncogenic signaling pathways, such as Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling, Phosphoinositide 3- Kinases (PI3Ks), tumor protein p53 (TP53), and Neurogenic locus notch homolog protein (NOTCH), contribute to the development of different tumor types, each exhibiting distinct morphological and phenotypic features that can be observed at a microscopic level. However, identifying genetic abnormalities for targeted therapy often requires invasive procedures, prompting exploration into non-invasive approaches like radiogenomics. This study explores the utility of radiogenomics and machine learning (ML) in predicting these oncogenic signaling pathways in GBM patients.