Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model.

Journal: Computers in biology and medicine
Published Date:

Abstract

The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits.

Authors

  • Ainhoa Ruiz-Vitte
    Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain; ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
  • María Gutiérrez-Fernández
    Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain.
  • Fernando Laso-García
    Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain.
  • Dolores Piniella
    Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain; Universidad Autónoma de Madrid and IdiPAZ Health Research Institute, La Paz University Hospital, Madrid, Spain.
  • Mari Carmen Gómez-de Frutos
    Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain.
  • Exuperio Díez-Tejedor
    Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain.
  • Alvaro Gutierrez
  • María Alonso de Leciñana
    Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain. Electronic address: malecinanacases@salud.madrid.org.