Deep-Learning Generated Synthetic Material Decomposition Images Based on Single-Energy CT to Differentiate Intracranial Hemorrhage and Contrast Staining Within 24 Hours After Endovascular Thrombectomy.
Journal:
CNS neuroscience & therapeutics
PMID:
39853936
Abstract
AIMS: To develop a transformer-based generative adversarial network (trans-GAN) that can generate synthetic material decomposition images from single-energy CT (SECT) for real-time detection of intracranial hemorrhage (ICH) after endovascular thrombectomy.