Multiscale feature enhanced gating network for atrial fibrillation detection.
Journal:
Computer methods and programs in biomedicine
PMID:
39847993
Abstract
BACKGROUND AND OBJECTIVE: Atrial fibrillation (AF) is a significant cause of life-threatening heart disease due to its potential to lead to stroke and heart failure. Although deep learning-assisted diagnosis of AF based on ECG holds significance in clinical settings, it remains unsatisfactory due to insufficient consideration of noise and redundant features. In this work, we propose a novel multiscale feature-enhanced gating network (MFEG Net) for AF diagnosis.