Enhancing Aortic Aneurysm Surveillance: Transformer Natural Language Processing for Flagging and Measuring in Radiology Reports.
Journal:
Annals of vascular surgery
PMID:
39424172
Abstract
BACKGROUND: Incidental findings of aortic aneurysms (AAs) often go unreported, and established patients are frequently lost to follow-up. Natural language processing (NLP) offers a promising solution to address these issues. While rule-based NLP methods have shown some success, recent advancements in transformer-based large language models (LLMs) remain underutilized. This study has 3 following aims: (1) to evaluate the effectiveness of our innovative transformer-based NLP pipeline regarding AA detection; (2) to detail the clinical impact by quantifying the number of patients who could benefit from such technology; and (3) to use this information to help coordinate appointments with patients, ensuring proper monitoring and management.