Early detection of disease outbreaks and non-outbreaks using incidence data: A framework using feature-based time series classification and machine learning.

Journal: PLoS computational biology
PMID:

Abstract

Forecasting the occurrence and absence of novel disease outbreaks is essential for disease management, yet existing methods are often context-specific, require a long preparation time, and non-outbreak prediction remains understudied. To address this gap, we propose a novel framework using a feature-based time series classification (TSC) method to forecast outbreaks and non-outbreaks. We tested our methods on synthetic data from a Susceptible-Infected-Recovered (SIR) model for slowly changing, noisy disease dynamics. Outbreak sequences give a transcritical bifurcation within a specified future time window, whereas non-outbreak (null bifurcation) sequences do not. We identified incipient differences, reflected in 22 statistical features and 5 early warning signal indicators, in time series of infectives leading to future outbreaks and non-outbreaks. Classifier performance, given by the area under the receiver-operating curve (AUC), ranged from 0 . 99 for large expanding windows of training data to 0 . 7 for small rolling windows. The framework is further evaluated on four empirical datasets: COVID-19 incidence data from Singapore, 18 other countries, and Edmonton, Canada, as well as SARS data from Hong Kong, with two classifiers exhibiting consistently high accuracy. Our results highlight detectable statistical features distinguishing outbreak and non-outbreak sequences well before potential occurrence, in both synthetic and real-world datasets presented in this study.

Authors

  • Shan Gao
    Department of Mathematics and Statistics, Yunnan University, China.
  • Amit K Chakraborty
    Department of Radiology, Stanford University, Stanford, California, USA.
  • Russell Greiner
    Unity Health Toronto (Verma, Murray, Straus, Pou-Prom, Mamdani); Li Ka Shing Knowledge Institute of St. Michael's Hospital (Verma, Straus, Pou-Prom, Mamdani); Department of Medicine (Verma, Shojania, Straus, Mamdani) and Institute of Health Policy, Management, and Evaluation (Verma, Mamdani) and Department of Statistics (Murray), University of Toronto, Toronto, Ont.; University of Alberta (Greiner); Alberta Machine Intelligence Institute (Greiner), Edmonton, Alta.; Montreal Institute for Learning Algorithms (Cohen), Montréal, Que.; Centre for Quality Improvement and Patient Safety (Shojania), University of Toronto; Sunnybrook Health Sciences Centre (Shojania); Vector Institute (Ghassemi, Mamdani) and Department of Computer Science (Ghassemi); Leslie Dan Faculty of Pharmacy (Mamdani), University of Toronto, Toronto, Ont.; Department of Radiology, Stanford University (Cohen), Stanford, Calif.
  • Mark A Lewis
    Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada.
  • Hao Wang
    Department of Cardiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China.