Deep learning paradigms in lung cancer diagnosis: A methodological review, open challenges, and future directions.
Journal:
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Published Date:
Feb 11, 2025
Abstract
Lung cancer is the leading cause of global cancer-related deaths, which emphasizes the critical importance of early diagnosis in enhancing patient outcomes. Deep learning has demonstrated significant promise in lung cancer diagnosis, excelling in nodule detection, classification, and prognosis prediction. This methodological review comprehensively explores deep learning models' application in lung cancer diagnosis, uncovering their integration across various imaging modalities. Deep learning consistently achieves state-of-the-art performance, occasionally surpassing human expert accuracy. Notably, deep neural networks excel in detecting lung nodules, distinguishing between benign and malignant nodules, and predicting patient prognosis. They have also led to the development of computer-aided diagnosis systems, enhancing diagnostic accuracy for radiologists. This review follows the specified criteria for article selection outlined by PRISMA framework. Despite challenges such as data quality and interpretability limitations, this review emphasizes the potential of deep learning to significantly improve the precision and efficiency of lung cancer diagnosis, facilitating continued research efforts to overcome these obstacles and fully harness neural network's transformative impact in this field.