Deep Learning Approaches to Predict Geographic Atrophy Progression Using Three-Dimensional OCT Imaging.

Journal: Translational vision science & technology
PMID:

Abstract

PURPOSE: To evaluate the performance of various approaches of processing three-dimensional (3D) optical coherence tomography (OCT) images for deep learning models in predicting area and future growth rate of geographic atrophy (GA) lesions caused by age-related macular degeneration (AMD).

Authors

  • Kenta Yoshida
    Department of Obstetrics and Gynecology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, Japan.
  • Neha Anegondi
    Clinical Imaging Group, Genentech, Inc., South San Francisco, California; Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California.
  • Adam Pely
    gRED Computational Science, Genentech, Inc., South San Francisco, CA, USA.
  • Miao Zhang
    gRED Computational Science, Genentech, Inc., South San Francisco, California.
  • Frederic Debraine
    Product Development Ophthalmology, Genentech, Inc., South San Francisco, CA, USA.
  • Karthik Ramesh
    School of Medicine, University of California San Diego, San Diego, CA 92093, United States.
  • Verena Steffen
    gRED Computational Science, Genentech, Inc., South San Francisco, California.
  • Simon S Gao
    gRED Computational Science, Genentech, Inc., South San Francisco, California.
  • Catherine Cukras
  • Christina Rabe
    Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Biostatistics, Genentech, Inc., South San Francisco, California.
  • Daniela Ferrara
    Genentech, Inc., South San Francisco, California.
  • Richard F Spaide
    Vitreous Retina Macula Consultants of New York, New York, New York; and.
  • SriniVas R Sadda
    Doheny Image Analysis Laboratory, Doheny Eye Institute, Los Angeles, CA, USA.
  • Frank G Holz
    Department of Ophthalmology, University of Bonn, Bonn, Germany.
  • Qi Yang
    Department of Radiology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun 130021, China (Y.W., M.L., Z.M., J.W., K.H., Q.Y., L.Z., L.M., H.Z.).