FLANet: A multiscale temporal convolution and spatial-spectral attention network for EEG artifact removal with adversarial training.

Journal: Journal of neural engineering
PMID:

Abstract

Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel methods based on deep learning demonstrate a notably prominent effect compared to traditional denoising approaches. However, those still suffer from certain limitations. Some methods often neglect the multi-domain characteristics of the artifact signal. Even among those that do consider these, there are deficiencies in terms of efficiency, effectiveness and computation cost.In this study, we propose a multiscale temporal convolution and spatial-spectral attention network with adversarial training for automatically filtering artifacts, named filter artifacts network (FLANet). The multiscale convolution module can extract sufficient temporal information and the spatial-spectral attention network can extract not only non-local similarity but also spectral dependencies. To make data denoising more efficient and accurate, we adopt adversarial training with novel loss functions to generate outputs that are closer to pure signals.The results show that the method proposed in this paper achieves great performance in artifact removal and valid information preservation on EEG signals contaminated by different types of artifacts. This approach enables a more optimal trade-off between denoising efficacy and computational overhead.The proposed artifact removal framework facilitates the implementation of an efficient denoising method, contributing to the advancement of neural analysis and neural engineering, and can be expected to be applied to clinical research and to realize novel human-computer interaction systems.

Authors

  • Junkongshuai Wang
    Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China.
  • Yangjie Luo
    Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China.
  • Haoran Wang
    Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
  • Lu Wang
    Department of Laboratory, Akesu Center of Disease Control and Prevention, Akesu, China.
  • Lihua Zhang
    Department of Mathematics, University of California, Irvine, CA, 92697, USA.
  • Zhongxue Gan
    Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China.
  • Xiaoyang Kang
    Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China.