Advancements in automated nuclei segmentation for histopathology using you only look once-driven approaches: A systematic review.
Journal:
Computers in biology and medicine
PMID:
40138968
Abstract
Histopathology image analysis plays a pivotal role in disease diagnosis and treatment planning, relying heavily on accurate nuclei segmentation for extracting vital cellular information. In recent years, artificial intelligence (AI) and in particular deep learning models have been applied successfully in solving computational pathology image analysis tasks. The You Only Look Once (YOLO) object detection framework, which is based on a convolutional neural network (CNN) architecture has gained traction across various domains for its real-time processing capabilities. This systematic review aims to comprehensively explore and evaluate the advancements, challenges, and applications of YOLO-based methodologies in nuclei segmentation within the domain of histopathological images. The review encompasses a structured analysis of recent literature, focusing on the utilization of YOLO variants for nuclei segmentation. Key methodologies, training strategies, dataset specifics, and performance metrics are evaluated to elucidate the strengths and limitations of YOLO in this context. Additionally, the review highlights the unique characteristics of YOLO that enable efficient object detection and delineation of nuclei structures, offering a comparative analysis against traditional segmentation approaches. This systematic review underscores the promising outcomes achieved through YOLO-based architectures, emphasizing their potential for accurate and rapid nuclei segmentation. Furthermore, it identifies persistent challenges such as handling variances in nuclei appearances, optimizing model architectures for histopathological images, and improving generalization across diverse datasets. Insights derived from this review can provide a foundation for future research directions and enhancements in nuclei segmentation methodologies using YOLO within histopathology, fostering advancements in disease diagnosis and biomedical research.