Development and validation of a machine learning model to predict hemostatic intervention in patients with acute upper gastrointestinal bleeding.
Journal:
BMC medical informatics and decision making
PMID:
40128792
Abstract
BACKGROUND: Acute upper gastrointestinal bleeding (UGIB) is common in clinical practice and has a wide range of severity. Along with medical therapy, endoscopic intervention is the mainstay treatment for hemostasis in high-risk rebleeding lesions. Predicting the need for endoscopic intervention would be beneficial in resource-limited areas for selective referral to an endoscopic center. The proposed risk stratification scores had limited accuracy. We developed a machine learning model to predict the need for endoscopic intervention in patients with acute UGIB.