Improving genetic variant identification for quantitative traits using ensemble learning-based approaches.
Journal:
BMC genomics
PMID:
40075256
Abstract
BACKGROUND: Genome-wide association studies (GWAS) are rapidly advancing due to the improved resolution and completeness provided by Telomere-to-Telomere (T2T) and pangenome assemblies. While recent advancements in GWAS methods have primarily focused on identifying genetic variants associated with discrete phenotypes, approaches for quantitative traits (QTs) remain underdeveloped. This has often led to significant variants being overlooked due to biases from genotype multicollinearity and strict p-value thresholds.