AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Quantitative Trait Loci

Showing 1 to 10 of 71 articles

Clear Filters

Transcripts and genomic intervals associated with variation in metabolite abundance in maize leaves under field conditions.

BMC genomics
Plants exhibit extensive environment-dependent intraspecific metabolic variation, which likely plays a role in determining variation in whole plant phenotypes. However, much of the work seeking to use natural variation to link genes and transcript's ...

Exploring new drug treatment targets for immune related bone diseases using a multi omics joint analysis strategy.

Scientific reports
In the field of treatment and prevention of immune-related bone diseases, significant challenges persist, necessitating the urgent exploration of new and effective treatment methods. However, most existing Mendelian randomization (MR) studies are con...

A multi-modal transformer for cell type-agnostic regulatory predictions.

Cell genomics
Sequence-based deep learning models have emerged as powerful tools for deciphering the cis-regulatory grammar of the human genome but cannot generalize to unobserved cellular contexts. Here, we present EpiBERT, a multi-modal transformer that learns g...

Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic archit...

Rapid and accurate multi-phenotype imputation for millions of individuals.

Nature communications
Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been ...

Machine Learning Methods for Classifying Multiple Sclerosis and Alzheimer's Disease Using Genomic Data.

International journal of molecular sciences
Complex diseases pose challenges in prediction due to their multifactorial and polygenic nature. This study employed machine learning (ML) to analyze genomic data from the UK Biobank, aiming to predict the genomic predisposition to complex diseases l...

Assessing the performance of generative artificial intelligence in retrieving information against manually curated genetic and genomic data.

Database : the journal of biological databases and curation
Curated resources at centralized repositories provide high-value service to users by enhancing data veracity. Curation, however, comes with a cost, as it requires dedicated time and effort from personnel with deep domain knowledge. In this paper, we ...

Deep learning-based classifier for carcinoma of unknown primary using methylation quantitative trait loci.

Journal of neuropathology and experimental neurology
Cancer of unknown primary (CUP) constitutes between 2% and 5% of human malignancies and is among the most common causes of cancer death in the United States. Brain metastases are often the first clinical presentation of CUP; despite extensive patholo...

Improving genetic variant identification for quantitative traits using ensemble learning-based approaches.

BMC genomics
BACKGROUND: Genome-wide association studies (GWAS) are rapidly advancing due to the improved resolution and completeness provided by Telomere-to-Telomere (T2T) and pangenome assemblies. While recent advancements in GWAS methods have primarily focused...

Integration of machine learning and genome-wide association study to explore the genomic prediction accuracy of agronomic trait in oats (Avena sativa L.).

The plant genome
Machine learning (ML) has garnered significant attention for its potential to enhance the accuracy of genomic predictions (GPs) in various economic crops with the use of complete genomic information. Genome-wide association studies (GWAS) are widely ...