Integrating local and global attention mechanisms for enhanced oral cancer detection and explainability.
Journal:
Computers in biology and medicine
PMID:
40056841
Abstract
BACKGROUND AND OBJECTIVE: Early detection of Oral Squamous Cell Carcinoma (OSCC) improves survival rates, but traditional diagnostic methods often produce inconsistent results. This study introduces the Oral Cancer Attention Network (OCANet), a U-Net-based architecture designed to enhance tumor segmentation in hematoxylin and eosin (H&E)-stained images. By integrating local and global attention mechanisms, OCANet captures complex cancerous patterns that existing deep-learning models may overlook. A Large Language Model (LLM) analyzes feature maps and Grad-CAM visualizations to improve interpretability, providing insights into the model's decision-making process.