Applying machine learning to high-dimensional proteomics datasets for the identification of Alzheimer's disease biomarkers.

Journal: Fluids and barriers of the CNS
PMID:

Abstract

PURPOSE: This study explores the application of machine learning to high-dimensional proteomics datasets for identifying Alzheimer's disease (AD) biomarkers. AD, a neurodegenerative disorder affecting millions worldwide, necessitates early and accurate diagnosis for effective management.

Authors

  • Christoffer Ivarsson Orrelid
    Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Rännvägen 6b, 41296, Gothenburg, Västra Götalandsregionen, Sweden. christoffer.orrelid@gmail.com.
  • Oscar Rosberg
    Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Rännvägen 6b, 41296, Gothenburg, Västra Götalandsregionen, Sweden.
  • Sophia Weiner
    Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Wallinsgatan 6, 43141, Möndal, Västra Götalandsregionen, Sweden.
  • Fredrik D Johansson
    The Division of Data Science and Artificial Intelligence, The Department of Computer Science and Engineering, Chalmers University of Technology, Sweden.
  • Johan Gobom
    Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Wallinsgatan 6, 43141, Möndal, Västra Götalandsregionen, Sweden.
  • Henrik Zetterberg
    Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, University of Gothenburg, Mölndal, Sweden.
  • Newton Mwai
    Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Rännvägen 6b, 41296, Gothenburg, Västra Götalandsregionen, Sweden.
  • Lena Stempfle
    Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Rännvägen 6b, 41296, Gothenburg, Västra Götalandsregionen, Sweden.