MMnc: multi-modal interpretable representation for non-coding RNA classification and class annotation.
Journal:
Bioinformatics (Oxford, England)
PMID:
39891346
Abstract
MOTIVATION: As the biological roles and disease implications of non-coding RNAs continue to emerge, the need to thoroughly characterize previously unexplored non-coding RNAs becomes increasingly urgent. These molecules hold potential as biomarkers and therapeutic targets. However, the vast and complex nature of non-coding RNAs data presents a challenge. We introduce MMnc, an interpretable deep-learning approach designed to classify non-coding RNAs into functional groups. MMnc leverages multiple data sources-such as the sequence, secondary structure, and expression-using attention-based multi-modal data integration. This ensures the learning of meaningful representations while accounting for missing sources in some samples.