Enhancing the accuracy and effectiveness of diagnosis of spontaneous bacterial peritonitis in cirrhotic patients: A machine learning approach utilizing clinical and laboratory data.
Journal:
Advances in medical sciences
PMID:
39419440
Abstract
PURPOSE: Spontaneous bacterial peritonitis (SBP) is a bacterial infection of ascitic fluid that develops naturally, without being triggered by any surgical conditions or procedures, and is a common complication of cirrhosis. With a potential mortality rate of 40 %, accurate diagnosis and prompt initiation of appropriate antibiotic therapy are crucial for optimizing patient outcomes and preventing life-threatening complications. This study aimed to expand the use of computational models to improve the diagnostic accuracy of SBP in cirrhotic patients by incorporating a broader range of data, including clinical variables and laboratory values.