Machine learning to improve HIV screening using routine data in Kenya.
Journal:
Journal of the International AIDS Society
PMID:
40254897
Abstract
INTRODUCTION: Optimal use of HIV testing resources accelerates progress towards ending HIV as a global threat. In Kenya, current testing practices yield a 2.8% positivity rate for new diagnoses reported through the national HIV electronic medical record (EMR) system. Increasingly, researchers have explored the potential for machine learning to improve the identification of people with undiagnosed HIV for referral for HIV testing. However, few studies have used routinely collected programme data as the basis for implementing a real-time clinical decision support system to improve HIV screening. In this study, we applied machine learning to routine programme data from Kenya's EMR to predict the probability that an individual seeking care is undiagnosed HIV positive and should be prioritized for testing.