A deep learning framework leveraging spatiotemporal feature fusion for electrophysiological source imaging.
Journal:
Computer methods and programs in biomedicine
PMID:
40245605
Abstract
BACKGROUND AND OBJECTIVES: Electrophysiological source imaging (ESI) is a challenging technique for noninvasively measuring brain activity, which involves solving a highly ill-posed inverse problem. Traditional methods attempt to address this challenge by imposing various priors, but considering the complexity and dynamic nature of the brain activity, these priors may not accurately reflect the true attributes of brain sources. In this study, we propose a novel deep learning-based framework, spatiotemporal source imaging network (SSINet), designed to provide accurate spatiotemporal estimates of brain activity using electroencephalography (EEG).