Attention LinkNet-152: a novel encoder-decoder based deep learning network for automated spine segmentation.
Journal:
Scientific reports
PMID:
40240440
Abstract
Segmenting the spine from CT images is crucial for diagnosing and treating spine-related conditions but remains challenging due to the spine's complex anatomy and imaging artifacts. This study introduces a novel encoder-decoder-based deep learning approach, named LinkNet-152, tailored for automated spine segmentation. The model integrates a modified EfficientNetB7 encoder with attention modules to enhance feature extraction by focusing on regions of interest. The decoder leverages a modified LinkNet architecture, replacing ResNet34 with the deeper ResNet152 to improve feature extraction and segmentation accuracy. Additionally, gradient sensitivity-based pruning is applied to optimize the model's complexity and computational efficiency. Evaluated on the VerSe 2019 and VerSe 2020 datasets, the proposed model achieves superior performance, with a Dice coefficient of 96.85% and a Jaccard index of 95.37%, outperforming state-of-the-art methods. These results highlight the model's effectiveness in addressing the challenges of spine segmentation and its potential to advance clinical applications.