Pre-trained molecular representations enable antimicrobial discovery.
Journal:
Nature communications
PMID:
40210659
Abstract
The rise in antimicrobial resistance poses a worldwide threat, reducing the efficacy of common antibiotics. Determining the antimicrobial activity of new chemical compounds through experimental methods remains time-consuming and costly. While compound-centric deep learning models promise to accelerate this search and prioritization process, current strategies require large amounts of custom training data. Here, we introduce a lightweight computational strategy for antimicrobial discovery that builds on MolE (Molecular representation through redundancy reduced Embedding), a self-supervised deep learning framework that leverages unlabeled chemical structures to learn task-independent molecular representations. By combining MolE representation learning with available, experimentally validated compound-bacteria activity data, we design a general predictive model that enables assessing compounds with respect to their antimicrobial potential. Our model correctly identifies recent growth-inhibitory compounds that are structurally distinct from current antibiotics. Using this approach, we discover de novo, and experimentally confirm, three human-targeted drugs as growth inhibitors of Staphylococcus aureus. This framework offers a viable, cost-effective strategy to accelerate antibiotic discovery.