Complex-valued neural networks to speed-up MR thermometry during hyperthermia using Fourier PD and PDUNet.

Journal: Scientific reports
PMID:

Abstract

Hyperthermia (HT) in combination with radio- and/or chemotherapy has become an accepted cancer treatment for distinct solid tumour entities. In HT, tumour tissue is exogenously heated to temperatures between 39 and 43 °C for 60 min. Temperature monitoring can be performed non-invasively using dynamic magnetic resonance imaging (MRI). However, the slow nature of MRI leads to motion artefacts in the images due to the movements of patients during image acquisition. By discarding parts of the data, the speed of the acquisition can be increased - known as undersampling. However, due to the invalidation of the Nyquist criterion, the acquired images might be blurry and can also produce aliasing artefacts. The aim of this work was, therefore, to reconstruct highly undersampled MR thermometry acquisitions with better resolution and with fewer artefacts compared to conventional methods. The use of deep learning in the medical field has emerged in recent times, and various studies have shown that deep learning has the potential to solve inverse problems such as MR image reconstruction. However, most of the published work only focuses on the magnitude images, while the phase images are ignored, which are fundamental requirements for MR thermometry. This work, for the first time, presents deep learning-based solutions for reconstructing undersampled MR thermometry data. Two different deep learning models have been employed here, the Fourier Primal-Dual network and the Fourier Primal-Dual UNet, to reconstruct highly undersampled complex images of MR thermometry. MR images of 44 patients with different sarcoma types who received HT treatment in combination with radiotherapy and/or chemotherapy were used in this study. The method reduced the temperature difference between the undersampled MRIs and the fully sampled MRIs from 1.3 to 0.6 °C in full volume and 0.49 °C to 0.06 °C in the tumour region for a theoretical acceleration factor of 10.

Authors

  • Rupali Khatun
    Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Soumick Chatterjee
    Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University Magdeburg, Germany; Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany; Data and Knowledge Engineering Group, Otto von Guericke University Magdeburg, Germany.
  • Christoph Bert
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Martin Wadepohl
    Dr Sennewald Medizintechnik GmbH, Munich, Germany.
  • Oliver J Ott
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Sabine Semrau
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstraße 27, 91054, Erlangen, Germany.
  • Rainer Fietkau
    Department of Radiation Oncology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Andreas Nürnberger
    Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany; Data and Knowledge Engineering Group, Otto von Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
  • Udo S Gaipl
    Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstraße 27, 91054, Erlangen, Germany.
  • Benjamin Frey
    Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.